Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.

نویسندگان

  • Jochen Kandulla
  • Hanno Elsner
  • Reginald Birngruber
  • Ralf Brinkmann
چکیده

The therapeutic effect of most retinal laser treatments is initiated by a transient temperature increase. Although crucial to the effectiveness of the treatment, the temperature course is not exactly known due to individually different tissue properties. We develop an optoacoustic method to determine the retinal temperature increase in real time during continuous-wave (cw) laser irradiation, and perform temperature calculations to interpret the results exemplary for transpupillary thermotherapy (TTT). Porcine globes ex vivo and rabbit eyes in vivo are irradiated with a diode laser (lambda=810 nm, P< or =3 W, phi=2 mm) for 60 s. Simultaneously, pulses from a N2-laser pumped dye laser (lambda=500 nm, tau=3.5 ns, E approximately 5 microJ) are applied on the retina. Following its absorption, an ultrasonic pressure wave is emitted, which is detected by a transducer embedded in a contact lens. Using the previously measured temperature-dependent Gruneisen coefficient of chorioretinal tissue, a temperature raise in porcine eyes of 5.8 degrees C(Wcm2) after 60 s is observed and confirmed by simultaneous measurements with an inserted thermocouple. In a rabbit, we find 1.4 degrees C(Wcm2) with, and 2.2 degrees C(Wcm2) without perfusion at the same location. Coagulation of the rabbit's retina occurs at DeltaT=21 degrees C after 40 s. In conclusion, this optoacoustic method seems feasible for an in vivo real-time determination of temperature, opening the possibility for feedback control retinal laser treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation.

In all fundus laser treatments of the eye, the temperature increase is not exactly known. In order to optimize treatments, an online temperature determination is preferable. We investigated a noninvasive optoacoustic method to monitor the fundus temperature during pulsed laser irradiation. When laser pulses are applied to the fundus, thermoelastic pressure waves are emitted, due to thermal expa...

متن کامل

Noninvasive temperature measurements during laser irradiation of the retina with optoacoustic techniques

In all laser treatments at the fundus of the eye the temperature increase is unknown. In order to optimize the treatment modalities, a noninvasive online temperature determination is preferable. Method: Applying laser pulses to the fundus, thermoelastic stress waves are emitted based on the thermal expansion of the heated tissue, mainly the retinal pigment epithelium (RPE). The amplitude of the...

متن کامل

Temperature-controlled retinal photocoagulation--a step toward automated laser treatment.

PURPOSE Retinal laser photocoagulation carries the risk of overtreatment due to effect variation of identically applied lesions. The degree of coagulation depends on the induced temperature increase and on exposure time. We introduce temperature controlled photocoagulation (TCP), which uses optoacoustics to determine individually exposure times necessary to create reproducible lesions. METHOD...

متن کامل

Optoacoustic real-time dosimetry for selective retina treatment.

The selective retina treatment (SRT) targets retinal diseases associated with disorders in the retinal pigment epithelium (RPE). Due to the ophthalmoscopic invisibility of the laser-induced RPE effects, we investigate a noninvasive optoacoustic real-time dosimetry system. In vitro porcine RPE is irradiated with a Nd:YLF laser (527 nm, 1.7-micros pulse duration, 5 to 40 microJ, 30 pulses, 100-Hz...

متن کامل

Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study.

Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2006